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Abstract—Emerging optical functional imaging and 
optogenetics are among the most promising approaches in 
neuroscience to study neuronal circuits. Combining both methods 
into a single implantable device enables all-optical neural 
interrogation with immediate applications in freely-behaving 
animal studies. In this paper, we demonstrate such a device capable 
of optical neural recording and stimulation over large cortical 
areas. This implantable surface device exploits lens-less 
computational imaging and a novel packaging scheme to achieve 
an ultra-thin (250μm-thick), mechanically flexible form factor. The 
core of this device is a custom-designed CMOS integrated circuit 
containing a 160×160 array of time-gated single-photon avalanche 
photodiodes (SPAD) for low-light intensity imaging and an 
interspersed array of dual-color (blue and green) flip-chip bonded 
micro-LED (μLED) as light sources. We achieved 60μm lateral 
imaging resolution and 0.2mm3 volumetric precision for 
optogenetics over a 5.4×5.4mm2 field of view (FoV). The device 
achieves a 125-fps frame-rate and consumes 40mW of total power. 
 

Index Terms—all-optical neural interface, computational 
imaging, lens-less imager, SPAD, optogenetics, flexible packaging 

I. INTRODUCTION 
ecent advancements in optical functional imaging and 
optogenetics have brought us closer to deciphering the 

human brain and inventing the next-generation of brain-
computer interfaces (BCI). The advent of genetically encoded 
calcium and voltage indicators (GECI/GEVI) and optogenetic 
probes has unlocked new capabilities for intracellular recording 
in-vivo with near single-action-potential sensitivity and for 
stimulation with cell-type specificity [1]. Combining both 
optical functional imaging and optogenetics into a single device 

enables simultaneous, all-optical, neural interrogation with the 
potential to revolutionize neuroscience studies. However, these 
methods are relegated today largely to expensive microscopes 
based on free-space optics. Miniaturizing such microscopes into 
an implantable form factor remains an elusive goal. As a first 
step towards developing such a device, a variety of head-
mounted “miniscopes” have been demonstrated [2]–[4]. Using 
conventional lens-based optics, however, these devices require 
considerable volume (more than 2cm3) to support field of views 
(FoVs) in the mm2 range. Because of the trade-off between the 
lens size and FoV in lens-based imagers [5], [6], imaging larger 
FoVs comes at the cost of much larger device size. For instance, 
achieving a 7.8×4mm2 FoV in a miniscope required a volume of 
over 24cm3 and mass of 33g [3]. Additionally, state-of-the-art 
miniscopes either lack or have very limited optogenetic 
capabilities for stimulation with any spatial selectivity [7]. To 
build a fully implantable miniscope, a more volume-efficient 
device is necessary that spans a relatively large cortical area 
while maintaining a minimally-invasive form factor. We have 
previously laid out a vision of what might be possible with 
whole new class of implantable optoelectronic devices [8]. 

In this paper, we demonstrate a new device ultimately capable 
of such a fully implantable form factor that supports all-optical 
neural recording and stimulation over a 5.4×5.4mm2 FoV at the 
target cortical depths of up to 200μm (Layer 2/3 in mouse brain). 
This mechanically flexible, implantable brain-surface device, 
illustrated in Fig. 1, enables fluorescence imaging in an ultra-
thin (< 250μm-thick) form factor by exploiting a recently 
developed lens-less computational imaging approach [6]. 
Device functionality is provided by a die-thinned CMOS 
integrated circuit consisting of a 2D array of SPAD detectors 
and flip-chip bonded μLED light emitters for both fluorescence 
excitation and optogenetic stimulation. While the proof-of-
concept device developed is wired, the ultimate incarnation of 
this device will be interfaced wirelessly, as shown in Fig. 1.  

This paper is organized as follows: Section II describes 
system-level design considerations for an all-optical neural 
interface. Section III introduces the computational imaging 
method. Chip architecture and packaging are presented in 
Section IV and Section V, respectively. Experimental results are 
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discussed in Section VI and compared with prior work in the 
conclusion (Section VII).  

II. DESIGNING AN IMPLANTABLE ALL-OPTICAL NEURAL 
INTERFACE 

In this section, we present an overview of design 
considerations and requirements for an implantable optical 
neural interface device for fluorescence imaging and 
optogenetics. The ideal form factor for such a device is one that 
is ultra-thin, flexible, and fully wireless with low enough power 
consumption to keep device heating below ~1°C. Fig. 1 
illustrates such a device, which can cover large cortical areas 
and target depths up to ~200μm with both epi-fluorescence 
imaging and stimulation capability. We elaborate on various 
aspects of the design in the following subsections.  

A. Integrated Light Sources 
A fully implantable device must contain all the necessary light 

emitters for fluorescence excitation and optogenetics that are 
also capable of reaching the entire FoV with sufficient 
brightness and spatial selectivity at the target depth. Lasers are 
typically used in bench-top optical imaging and optogenetics 
experiments. While continuous-wave (CW) visible light lasers 
have been previously integrated in a brain implant for 
optogenetic stimulation [9], poor efficiencies (typically 10%) 
and the need for an active photonic platform to steer highly 
focused laser beam to illuminate large FoVs make lasers largely 
unsuitable for low-power and fully implanted optical neural 
interfaces. Alternatively, μLED arrays show great promise to 
create high-density and programmable illumination patterns. 
However, monolithic GaN [10], [11] are not CMOS compatible, 
and organic LEDs (OLED) [12], [13] do not yet provide 
sufficient brightness for fluorescent imaging or stimulation. As 
a result, we use flip-chip bonded arrays of commercial Cree 
μLEDs [14] in this work. Despite their relatively larger footprint 
(220μm×250μm) compared with monolithic GaN and OLEDs, 
they provide ultrahigh brightness at high efficiency (~30%) and 
relatively narrow linewidth (~20nm).  

Our device incorporates two separate 5×5 arrays of blue 
(470nm) and green (535 nm) TR2227 Cree μLEDs with 1.08mm 
pitch for fluorescence excitation and optogenetic stimulation, 
respectively, as shown in Fig. 1. We will discuss the impacts of 
missing imager pixels due to μLED placements in Section III. 
The choice of these wavelengths depends on the target 
optogenetic and fluorescent probes [1]. In order to estimate the 
brightness at our target depth (~200μm), we modeled the light 
propagation of μLEDs in scattering tissue using Monte Carlo 
methods [15]. We used typical values of optical properties for 
the brain tissue (scattering and absorption coefficients of 
μs=10mm−1 and μa=0.01mm−1, respectively, scattering 
anisotropy of g=0.9, and refractive index of n=1.38 [16]). Fig. 2 
shows the simulation results of a 2-by-2 subset of our μLED 
array. Green μLEDs with maximum radiance of 12mW result in 
the brightness of ∼114mW/mm2 at the brain surface. After 
propagation in 200μm brain tissue, the brightness drops to 
~4mW/mm2 due to the angular spreading, tissue scattering, and 
absorption (Fig. 2a). Given the minimum required light intensity 
of ~0.5mW/mm2 required at the location of neuron for most 
optogenetic probes [17], our μLED array is sufficiently bright 
and dense to stimulate the entire FoV at the target depth. On the 
imaging side, blue μLEDs provide a maximum radiance of 
30mW equivalent to a power density of ∼285mW/mm2. This 
results in a minimum fluorescence excitation light intensity of 
~10mW/mm2 at the target imaging depth of 200μm while the 
backscattered excitation light reaches ∼10mW/mm2 at the 
surface of device, as the simulation shows in Fig. 2b. 

B. Optical Filters 
We also need to integrate thin and flexible optical filters with 

sufficient optical density (OD) to reject the excitation light 
background over the fluorescent emission. Despite prior efforts 
to integrate interference filters [18] and plasmonic structures 
[19] with CMOS image sensors, filtering requirements are 
particularly challenging for our device due to the small Stokes 
shift of GECI/GEVI biomarkers (< 30nm) [20] compared with 
fluorophores in other applications (> 100nm) [21]. 

In order to estimate the signal-to-background ratio (SBR), we 
use the light propagation model shown in Fig. 2b. The 

 
Fig. 1. Proposed mechanically flexible and implantable device for all-optical 
neural recording and stimulation. 

 
Fig. 2. Light propagation simulation in the brain tissue from (a) blue and (b) 
green μLED arrays (𝑧 denotes the depth into the brain tissue with 𝑧 = 0 
corresponding to the device surface). 
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fluorescence conversion efficiency from blue to green 
fluorescence emission light (e.g., 518nm which is the peak 
emission of widely used GCaMP6f) is estimated to be ~0.17% 
based on the Beer-Lambert law and GCaMP6f’s brightness 
(3700M−1mm−1 [20]) typical concentration (10−6M [22]), and 
neuron’s diameter (~20μm). Assuming isotropic scattered 
emission and 10mW/mm2 fluorescence excitation light intensity 
at the target imaging depth, we expect the received fluorescent 
emission light intensity of ~0.02μW/mm2 at the device, which 
results in the peak SBR of 0.2×10-5. This normally necessitates 
using thick (>1mm) and rigid interference filters on glass with 
ODs of better than 6 in table-top imaging setups and miniscopes. 
However, this imposes serious challenges to make an ultrathin 
and mechanically flexible imager. More importantly, 
computational imaging, adopted in this work, relies on detecting 
wide-angle photons to provide large effective numerical 
aperture (NA). On one hand, interference filters are inherently 
angle-sensitive, providing peak performance at normal 
incidence. On the other hand, absorption filters are insensitive 
to angle, but typically cannot provide more than OD3 of 
rejection due to their more gradual cutoff slope and 
autofluorescence effects [23]. To achieve the best filter 
performance, we combine a wide-angle interference filter, an 
absorption filter (described in Section V), and time gating (TG) 
to achieve a total peak filter performance of better than OD5. 

C. Image Sensor 
Miniscopes and miniaturized cameras use commercial image 

sensors with arrays of photo diodes (PDs) fabricated in CMOS 
imager (CIS) processes. Instead, we design and optimize a 
custom SPAD-based image sensor to enable TG fluorescence 
imaging through single-photon counting. In gated operation, the 
imager is only activated after each excitation pulse, as illustrated 
in Fig. 3a. Gating the sensor provides additional background 
rejection of scattered excitation light complementing the 
interference and absorption filters. Moreover, it also enables a 

fluorescence life-time imaging (FLIM) mode [24], [25].  
While TG imaging can, in principle, provide arbitrarily large 

excitation rejections, the efficacy is limited in practice by the 
turn-off time of the excitation pulse (the more abrupt the turn-
off, the better), the fluorescence life-time (longer lifetimes 
provide easier background rejection), and the impulse-response 
function (IRF) of the SPAD detectors (the faster the IRF, the 
better). Despite the advantage of having no read noise, SPAD-
based imagers suffer from lower photon detection efficiencies 
(PDE) when compared to conventional PD imagers. 
Additionally, TG imagers typically consume larger power 
compared with PD or passive SPAD imagers due to the extra 
dynamic power required for gating the pixels. In order to 
contrast the overall performance of a SPAD-based TG imager 
with a conventional PD-based imager, we have modeled and 
calculated SNR [26], [27] for both imager types. The PD imager 
parameters (quantum efficiency (QE) of 0.6, well capacity of 
52ke-, dark current of 0.15fA, and read noise of 10e-) are based 
on a commercial Aptina CMOS image sensor (MT9V021) [2], 
while we assumed a conservative dead-time of 25ns and dark-
count-rate of 26cps for the SPADs. We look at two PDE 
possibilities for the SPAD imager, 1% and 10%, as determined 
by both fill factor (FF) and photon detection probability (PDP). 
Both SPAD and PD imagers contain photon shot noise due to 
the background and fluorescence counts as well as dark-counts, 
while the PD imager has additional read noise. Shot noise limit 
curves in Fig. 3 indicate the theoretical SNR limit of imaging 
fluorescence with no background and the noise floor is entirely 
determined by photon shot noise.  

At high intensities, saturation is determined by full well 
capacity in the PD imager and by the dead-time in the SPAD 
imager. The dynamic range of the PD imager is extended 
through multiple sampling in which the frame window is 
divided into k samples at 1/2k fractions of the starting integration 
time, such that well saturation is avoided for the shortest 
integration-time sample.  The total frame time (sum of all 
integration time of the k samples) is set to 1/f, where f is the 
frame rate. The resulting SNR of the PD imager in the well- 
saturated regime is estimated using the multiple sampling 
scheme [27]. At our target frame-rate of f=125fps (as required 
for emerging GEVI reporters which can detect sub-ms action 
potentials [28]), Fig. 3 shows the SNR as a function of received 
fluorescence power for three imagers under two filtering 
scenarios: optical filtering of OD5 (Fig. 3b), and optical filtering 
of OD3 (Fig. 3c-d). Notice that imagers can become saturated 
due to the relatively large excitation background intensity. 
Overall, the TG SPAD-imager can achieve a higher SNR 
compare with a PD imager for low-OD (OD < 3) filtering, and 
the improvement is larger at higher TG excitation background 
rejections (TG of 1× and 25× are plotted in Fig. 3c-d). This 
results from the challenges PD imagers have in managing the 
background light. Notice that even increasing the dynamic-
range of a PD imager cannot solve this issue as the excitation 
background and SNR will be limited by the optical filtering OD. 

 
 

Fig. 3. (a) TG fluorescence imaging, and (b-d) SNR vs. received fluorescent 
emission light intensity at the imager for multiple conditions. 
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At OD 5, however, PD imagers outperform the SPAD-based 
imagers, mainly because of the lower PDE of SPADs. This can 
be rectified in the future with larger FF SPAD designs, 
demonstrated in part by the more comparable performance 
achieved at 10% PDE for the SPAD-based design in Fig. 3b. 

Another critical design consideration is the total power 
consumption to minimize the heating in brain tissue. As 
explained in Section VI, our device consumes 45mW total 
power, estimated to keep tissue heating below ~1.5°C [29]. 
While it is within the range to enable continuous operation 
without heating concerns, further low-power optimization can 
lower the heating to even below the ideal range of 1°C. 

III. COMPUTATIONAL IMAGING 
Lens-based microscopes suffer from a fundamental trade-off 

between device size and performance; as lenses become smaller, 
they must either collect less light or image a smaller FoV [6]. 
This makes them unsuitable for implantable fluorescence 
imagers. In this work, we exploit computational imaging [5], 
[30] to enable a lens-less, compact and ultrathin device. In a 
lens-based system, the lens collects and focuses light from the 
scene pixels to the sensor pixels with a one-to-one mapping, but 
in a computational lens-less system, unfocused light from a 
single point on the scene is spatially modulated (by the mask) 
and mapped to multiple sensor pixels. Computational imaging 
masks can be realized with either a coded-aperture mask [6], 
phase mask [31] or an arbitrary diffuser mask [30]. After the 
calibration, the scene is computationally reconstructed by 
running an inverse imaging algorithm on the raw capture. 
Additionally, we can reconstruct a 3D scene from a single raw 
capture by calibrating and solving the optimization problem at 
multiple depths. In this approach, we can achieve large FoVs 
(equal to imager’s area) with a high effective NA in an ultrathin 
form factor. This leads to a higher SNR compared with near-
field lens-less approaches such as angle-sensitive, metal 
gratings and plasmonic structures [32], [33]. The lens-less 
computational imaging in our device is adopted from the Texas 
two-step (T2S) model [6] and it is described below.   

A. Texas two-step (T2S) Model 
The T2S model [6] requires a coded-aperture mask to 

spatially encode the unfocused light from the scene comprised 
of incoherent micron-scale fluorescent sources (e.g., neurons) as 
shown in Fig. 4. This approach greatly simplifies both the 
calibration and image reconstruction process by using a 
separable mask pattern composed of the outer product of two 
random binary vectors. Despite a simple mask design and 
fabrication steps (Section V), it improves the computational 
tractability of reconstruction over other methods using arbitrary 
diffuser masks [30]. While an amplitude binary mask with 
overall 50% transmission was used in this work, phase masks 
can also be used to achieve a higher SNR [31], [34].  

B. Image Reconstruction 
Figure 4 illustrates the T2S model assuming a single 

fluorescent bead as the scene. Due to the mask separability, local 
spatially varying point spread function can be written as the 
superposition of two independent terms: The first term models 
the effect of a hypothetical “open” mask (with no apertures), and 
the second term models the effect due to the coding of mask 
patterns. Hence, for a 2D (planar) scene 𝑋, the raw capture at 
the imager (𝑌) can be expressed as: 

 
𝑌 = 𝑌! + 𝑌" = 𝑃#𝑋𝑄#$ + 𝑃%𝑋𝑄%$                      (1) 

 
where 𝑃# and 𝑃% operate only on the rows of 𝑋, and 𝑄# and 𝑄% 
operate only on the columns of 𝑋 (the subscripts o and c refer to 
“open” and “coding,” respectively). In order to image a 3D 
volumetric scene from a single shot, we can extend equation (1) 
to multiple depths as: 

 
𝑌 = ∑ 𝑃#&𝑋&𝑄#&$ + 𝑃%&𝑋&𝑄%&$'

&()                       (2) 
 

where the subscript 𝑑 represents the depth assuming the entire 
target 3D volume is discretized over 𝐷 planar samples. By 
knowing the 𝑃#,% and 𝑄#,% matrices, we can reconstruct the scene 
from any raw capture by solving a regularized least-squares 
reconstruction optimization problem (Fig. 5a). The one-time 

 
Fig. 5. (a) Computational imaging overall flow, (b) effect of missing pixels on 
conventional lens-based vs. computational imagers, (c) modified reconstruction 
optimization problem after incorporating the effect of missing pixels.  

Fig. 4. Texas two-step (T2S) computational imaging model from [6]. 
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calibration process is used to estimate these four calibration 
matrices (𝑃#,% and 𝑄#,%). The calibration process is performed by 
sweeping the vertical and horizontal fluorescence line source in 
the row and column directions, respectively, across the entire 
FoV. This 2D raster-scan procedure is repeated for all 𝐷 depths 
(distance above the mask) of interest and essentially the step size 
of depth scans determines the resolution depth imaging.  

C. Computational Imaging with Missing Pixels 
Illuminating a large FoV uniformly with sufficient light 

intensity for implantable optical neural devices is very 
challenging. Unlike previous efforts to place light source on the 
boundary of image sensors [34], [35], we are distributing μLEDs 
across the entire imager as illustrated in Fig. 1 to solve this issue. 
However, this μLED placement will interfere with the imager. 
Even though the sensor is missing 12.5% of the pixels of a full 
160×160 array due to the μLEDs placement on the chip, the 
computational lens-less imaging is able to compensate for these 
“gaps” in image reconstruction. This contrasts with a lens-based 
imager which would miss all fluorescent sources located above 
the μLEDs (Fig. 5b). We exploit this unique advantage of 
computational imaging by modifying equation (1) as follows: 

 
𝑌 = 𝑀	⨀	(𝑃#𝑋𝑄#$ + 𝑃%𝑋𝑄%$)                      (3) 

 
where 𝑀 is a 160×160 binary matrix with zeros where ever 
pixels are missing and ⨀ denotes the element-wise (Hadamard) 
product. Thus, we used the modified image reconstruction 
optimization (for a single depth) as shown in Fig. 5c.  

IV. CHIP ARCHITECTURE 
The all-optical neural interface chip was designed and 

implemented in a 0.13-μm high-voltage CMOS process. Fig. 6 
depicts the chip architecture and imaging timing diagrams. 
Details of each major sub-block circuitry are described below.  

A. Imager Architecture and Optogenetics Backend 
The imager operates in the photon-counting mode with a 

configurable, sliding time-gate to provide additional 
background rejection as described in Section II. In order to 
reduce power, area, and readout data-rate requirements, the 
imager employs a rolling-shutter which is combined with 
selective powering of the excitation μLEDs to reduce power and 
also help to reduce excitation background. The entire imager is 
comprised of a 5×5 array of macros, each consisting of 16 
blocks in a 4×4 configuration. Of these blocks, 14 are 8×8 SPAD 
arrays, one is for the excitation μLED driver, and one is for the 
optogenetic μLED driver. During the selection of each sub-
frame, which consist of a 5×1 macro column, only excitation 
μLEDs in the given column are activated. The SPAD array 
blocks are enabled column-wise, where each pixel remains 
active for 1024 excitation pulses of the μLED, and the detected 
photon counts are stored in shared-row 10-bit counters. Overall, 
the imager achieves a frame-rate of 125fps with a 40MHz 
reference clock. The data transmitter (Tx) block serializes the 
counter values and sends them off-chip to a control FPGA.  

For optogenetics, stimulation signals are generated on-chip 
with tunable repetition-rates (5-40Hz) and pulse-widths (with 
0.1ms LSB precision). The optogenetic μLED columns are also 
time-multiplexed to reduce the peak current and required on-
chip decoupling capacitance. The stimulation pattern can be 
configured by enabling individual μLEDs, each one 
illuminating ~0.2mm3 brain regions covering the entire FoV 
with 2D spatial selectivity as simulated in Fig. 2.  

B. Micro-LED Drivers 
There are two different types of μLED drivers for optogenetic 

and fluorescence excitation arrays. Due to slow optogenetic 
signals, the programmable control signals are generated in the 
chip periphery and then distributed across each column. Then, 
the μLED high-voltage drive head is implemented using a level-

 
Fig. 6.  Block diagram of the all-optical neural interface chip with the timing 
diagrams of control signals for rolling-shutter imaging and stimulation included 
(all the control and enable signals are thermometer coded). 

 
Fig. 7. Circuit diagrams of major sub-blocks including excitation μLED drivers, 
AQC, and row/column connectivity architecture with an example timing 
diagram of photon detection operation. 
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shifter to apply up to 3.3V to the optogenetic μLEDs. Each high-
swing μLED driver is also equipped with ~0.1nF of on-chip 
decoupling capacitance. The driver for the excitation μLEDs 
(shown in Fig. 7) is also based on the same high-voltage drive 
head with additional capabilities to generate sub-ns pulses 
locally by driving the μLED cathode to CVDD for turn-off. In 
doing so, we also push the μLED into reverse bias, reducing the 
turn-off time and, consequently, improving the effectiveness of 
time gating [36].  

C. Active Quench and Clock-based Reset Circuit (AQC) 
The SPADs are implemented with a 7.5-μm-diameter active 

area using a custom implant. Each pixel has a 30μm pitch with 
an AQC and 5% effective FF. The AQC circuit and its timing 
diagram is illustrated in Fig. 7. The excitation μLED driver 
generates ultrashort light pulses at every positive edge of the 
excitation clock (Exc. Col). Next, a delayed clock (EN) is used 
to activate the AQCs for photon detection. On the rising edge of 
EN, a level-shifter turns-off M1 and triggers a minimum duration 
one-shot reset pulse to the gate of M2. When ANODE is 

discharged to GND, the inverter-based comparator flips its 
output leaving the SPAD in a high-impedance Geiger-counting 
mode. Avalanche detection of a photon causes the comparator 
to flip, which quenches the avalanche current and triggers the 
buffered output to the row-shared 10b counter. 

V. INTEGRATION AND PACKAGING 
Micrographs of the chip and major sub-blocks are shown in 

Fig. 8. The entire chip area is 8×8mm2. In this section, we 
elaborate on the fabrication and post-processing steps of this 
CMOS chip to make it mechanically flexible, while containing 
all the crucial components including optical filters and μLEDs. 

A. The Imaging Mask and Optical Filters Fabrication 
The binary amplitude mask is fabricated by patterning a 100-

nm-thick chromium layer with 15μm feature sizes on a 100-μm-
thick flexible absorption filter that is bonded onto the chip. The 
mask pattern and feature sizes are optimized for a mask-sensor 
separation and the imaging distance of 100μm and 200μm, 
respectively. Fig. 9 shows the cross-section of integrated optical 
filters and the imaging mask along with some of their 
micrographs. We employed both a long-pass absorption filter 
and a custom-designed wide-angle interference filter to reject 
excitation light scattered from the tissue. The interference filter 
consists of multiple thin-film dielectric layers with a total 
thickness of ~10μm, which is directly deposited on the CMOS 
chip. This filter is optimized to reject the 470nm excitation light 
relative to fluorescence emission at 520nm with OD > 3 for 
angles up to 45°. During the deposition process, bond pads are 

 
Fig. 8. Micrographs of the bare chip and a flip-chip bonded μLED. 

 
Fig. 9. Cross-section of imager chip with integrated optical filters, micrographs 
of the chip with interference filter, and the absorption filter with imaging mask 
fabricated on top. 

 
Fig. 10. Flexible packaging: (a) process steps and photos of final device, and 
(b) final package cross-section (Parylene encapsulation is not shown). 
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protected by photoresist and tape, making them accessible after 
the filter integration for bonding μLEDs. 

Unlike angle-sensitive interference filters, the absorption 
filter accepts wide-angle photons and can be used as the 100μm 
spacer required for the computational mask without increasing 
the overall thickness of the system. The gelatin-based filter in 
this work provides ~26dB (OD2.6) and it is also laser cut to 
create openings for the μLEDs.  
B. Flexible Packaging Flow 

Future implantable neural interfaces should be mechanically 
flexible to conform to brain curvatures [37]. This is particularly 
critical for large surface devices, covering large cortical areas. 
Here, we describe the packaging approach developed to make 
our device mechanically flexible, which is achieved by die 
thinning the CMOS chip down to below 20μm total thickness. 
It has been shown previously that die-thinned CMOS chips can 
be bent to sub-2-cm radii of curvature with gate delay and drain 
current changes of less than 7% [38], [39]. While flexible thin-
film transistor platforms have been demonstrated recently for 
biomedical applications [40], [41], they lack the versatility and 
scalability of CMOS processes.  

Fig. 10a shows the full packaging flow developed in this 
work. After depositing the interference filter on the CMOS chip, 
the die is flip-chip bonded onto a polyimide flexible PCB with 
thickness of ~50μm with lead-free solder bump (Step 1). The 
PCB has a cut-out to provide a viewing window for the chip 
while maintaining sufficient overlap with chip boundary for 

underfill epoxy. Next, the μLEDs are pick-and-place flip-chip 
bonded using solder bumps (Step 2). In Step 3, the CMOS chip 
is temporary bonded on a glass carrier face-down for mechanical 
backside grinding and polishing via a micro-grinder tool. This 
in-house post-processing step results in a silicon substrate 
thickness of below 7.5μm with ~1μm standard deviation across 
entire chip area. After releasing the die-thinned chip from glass 
carrier, we epoxy a polyimide support substrate (~50μm thick) 
to the backside of the chip, epoxy the optical filter (with imaging 
mask) to the frontside of the chip, and finally parylene coat the 
entire device for bio-compatibility [42]. Fig. 10b shows the 
cross-section of final flexible package with < 250μm thickness.  

VI. EXPERIMENTAL RESULTS 
Measurements and device characterizations are presented in 

this section. All the measurements are done with a 40MHz 
reference clock leading to the 125fps frame-rate. Total chip 
power consumption is 40mW with 3mW and 2mW budgeted for 
excitation and optogenetics (for 1ms pulse-width at a 20Hz rate 
setting) illumination, respectively. 

A. Sub-block Characterizations 
Characterization of the imager’s optical elements and time-

gating is shown in Fig. 11. First, we characterized the spectral 
response of the SPAD sensor which achieves 12% photon-
detection probability (PDP) at 520nm (target peak emission) 
with a median dark-count rate (DCR) of 26cps. The optical 
absorption filter provides ~400× (=26dB) rejection between 
470nm and 520nm as discussed in Section V. The transmission 
of custom-designed interference filter at multiple angles is 
shown in Fig. 11b, which shows OD > 3 for angles below 45°.  

We have also characterized the nonlinear relationship 
between SPAD counts and photon flux due to photon pile-up 
[43], [44]. While this effect is negligible in our application since 
the imager will only operate in the low photon-flux regime, we 
linearize the sensor counts to enhance imaging quality and 
extend the dynamic-range for other applications.  

 
Fig. 12. The μLEDs optical power density (a) and the measured time-gated 
optical IRF using the chip itself at multiple CVDD (b). 

 
Fig. 11. (a) SPAD’s PDP and absorption filter transmission, (b) interference 
filter transmission, (c) SPAD’s non-linear response, and (d) time-gating 
performance averaged over all pixels. 

 
Fig. 13. (a) Schematic of the experimental setup, (b) illustration of optical setup 
for imager calibration, and (c) photo of the calibration setup. 
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Next, the temporal response and time-gating efficacy were 
evaluated by sweeping the time delay between the excitation and 
gating clocks while imaging Fluoresbrite YG beads 
(Polysciences Inc.) with 10μm diameters. Figure 11d shows the 
raw counts of a scene saturated with fluorescent beads 
illuminated via an external ps-laser incident the chip without any 
optical filters. The SBR plot is the ratio of the raw counts with 
and without the beads which show that the efficacy of TG is 
~15× (~11.7dB). We can also extract the beads’ fluorescence 
lifetime (~3.6ns), which is longer than previously reported 
values ~2.3ns [45] due to the relatively long tail in the IRF 
response of the SPADs with an estimate full width at half 
maximum (FWHM) of ~1.1ns. It is known that time-gating to 
achieve time-correlated single-photon counting (TCSPC) in 
SPADs produces an longer-tail IRF to approaches based on 
time-to-digital converters [46], which were not implemented 
because of area and power constraints. 

Finally, Fig. 12 shows the measured optical power density of 
blue and green μLEDs and the estimated target operating points 
for fluorescence excitation and optogenetics (providing 
~0.5mW/mm2 at 200μm in brain tissue as explained in Section 
II. The μLED temporal characteristics of short excitation optical 
pulses are measured via the SPAD detectors on the chip itself 
(Fig. 12b). Estimated turn-off time is ~0.6ns given that the TG 

imager’s IRF is convolved with optical pulses in this plot. 
Applying a 2V reverse voltages (CVDD) using proposed μLED 
driver reduced the turn-off time by ~0.3ns (Fig. 7). 

B. Imager Calibration and Characterization  
The experimental test setup for imaging and calibration (to 

estimate the separable transfer functions as explained in Section 
III) is shown in Fig. 13, where we used a commercial green 
(520nm) LED array and pass the light through a 30μm cross-
hair line slit mounted to an 80º wide angle diffuser. This mimics 
an isotropic, fluorescent line source. The one-time calibration 
process is performed at the target image distances of 200μm to 
500μm with a 50μm step size. After calibration, the resolution 
is measured by imaging a double-line slit mask with 30μm width 
and 60μm spacing (Fig. 14). The cross-section of the 
reconstructed double-line slits proves that we can achieve better 
than 60μm lateral resolution. 

Next, a sparse sample of Fluoresbrite YG beads with 45μm 
diameter on a glass cover slip is imaged with our device and a 
confocal microscope simultaneously. Fig. 15 shows the results 
under ~0.5mW/mm2 excitation intensity at the beads plane. 
Ground truth images are the overlap of confocal microscope 
image and actual bead locations. In the first experiment one 
sample is placed at a 200μm distance from the mask. In the 
second experiment, we placed two planar samples at a 300μm 
and 500μm distance from the mask to verify the 3D imaging 
capability. Beads are fully imaged and reconstructed in both 

TABLE I 
PERFORMANCE SUMMARY AND COMPARISON WITH PRIOR WORKS 

Reference Papageorgio, 
et al. [32] 

Lee, et al. 
[33] 

This 
Work 

CMOS Technology 0.18µm 0.18µm 0.13µm 
Chip Area (mm2) 4.7×2.25 2.64×3 8×8 
Supply Voltage (V) 1.8 1.8 1.5 
Pixel Pitch (µm) 55 35 30 

Excitation Wavelength (nm) 450 385 470 
Emission Wavelength (nm) 705 540 520 
PDP (or QE) 5%* 2.7% 12% 
Fill-factor 28% 14.4% 5% 
Resolution (µm) 220 1000* < 60 
FoV (mm2) 4.4×1.98 2.1×2.5 5.4×5.4 
Frame-rate (fps) 20 N/R 125 
Power (mW)** 3.5+ 83.8 40 
Array Size 80×36 72×60 160×160 
Pixels Acceptance Angle ±18º ±10º ±70º 
Read-out Data-rate (Mb/s) N/A N/R 40  
Integrated Light Source No No Yes 
*  Estimated from figures/data, ** Illumination power not included 
+ Not including off-chip ADCs 

 
 

 

 

Fig. 16. (a) Photo of the mechanically flexible device wrapped around a 10mL 
beaker for testing, (b) functional μLEDs pulsing after bending, and (c) 
performance comparison of CMOS after die-thinning and bending.  

 
 

 
Fig. 15. Imaging sparse samples of fluorescent beads and cross-validation with 
confocal microscope images. 

 
Fig. 14. Imager’s resolution characterization with vertical and horizontal 
double-line slits (insets show median intensity across the lines). 
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experiments with some minor artifacts. These artifacts are due 
to the insufficient SBR requiring further improvements to the 
optical filters and TG efficiency in future implementations.  

The raw captures in Fig. 14 and Fig. 15 clearly show the 
effects of pixel “gaps” due to the placement of μLEDs on the 
imager. However, we can still reconstruct the scene as explained 
in Section III. While reconstructed image shows some variations 
(e.g., peak intensities in Fig. 14) depending on the portion of 
missing information from the raw capture, such artifacts can be 
reduced in future by minimizing gap sizes (e.g., by using smaller 
μLEDs). Compared to the double-line slit reconstruction (Fig. 
14) which shows a few artifacts, the sparse sample in Fig. 15 is 
fully reconstructed without artifacts and more accurately 
mimics the sparsity of neural activity. 

C. Mechanically Flexible Device  
Finally, we wrapped the mechanically flexible device around 

a 10mL lab beaker with 1.25cm radius of curvature (Fig. 16) to 
show and evaluate the device flexibility. The flexible packaging 
allows for the chip and all the μLED and I/O bond pad 
connections to bend without breaking, as shown in Fig. 16, 
where the chip is functioning and lighting up the optogenetic 
μLEDs. In order to measure the impact of die-thinning and 
mechanical stress on electronics after bending, we measured the 
delay of a CMOS logic gate chain (with 16ns nominal delay), 
which is distributed across the chip curvature. The bar-chart 
shows the normalized CMOS logic speed (estimated from 
1/total delay) at each state with maximum 6% changes in the 
curved state. Similarly, changes in analog block (including 
drivers, AQC, and clocking) performance were negligible. We 
expect that the proposed calibration and reconstruction 
approach can be extended to the bended imager case with a 
simple geometric mapping since radius of curvature is much 
larger than mask feature size. 

VII. CONCLUSION 
Measurement’s summary and comparison with prior 

fluorescence imagers are presented in Table. I. We have 
achieved the highest resolution and largest FoV with fully 
integrated light-source, thanks to the computational imaging 
technique adopted and modified in this work. 

We have demonstrated a mechanically flexible, low-power, 
implantable, and lens-less device for all-optical neural 
stimulation and recording that achieves better than 60μm 
resolution over a large 5.4×5.4mm2 FoV in this work. Our 
approach is the first step toward a fully implantable all-optical 
recording and stimulation brain interface device that can achieve 
better than cm2 FoVs. Future generations will reduce pixel pitch 
and increase sensor FF by sharing SPAD’s guard-rings and 
simplifying in-pixel circuitry (e.g., by operating at standard 
VRST voltage-range which eliminates the level-shifter and 
thick-oxide devices). Moreover, background rejection can be 
further improved using semiconductor-based absorption filters 
and metal-dielectric interference filters. Additional power and 
data wireless capabilities will also simplify the flexible 

packaging and make these devices more suitable for in-vivo 
applications. 
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