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Abstract
Electron beam lithography (EBL) is the state-of-the-art technique for rapid prototyping of
nanometer-scale devices. Even so, processing speeds remain limited for the highest resolution
patterning. Here, we establish Mr-EBL as the highest throughput negative tone electron-beam-
sensitive resist. The 10 μC cm−2 dose requirement enables fabricating a 100 mm2 photonic
diffraction grating in a ten minute EBL process. Optimized processing conditions achieve a
critical resolution of 75 nm with 3× faster write speeds than SU-8 and 1–2 orders of magnitude
faster write speeds than maN-2400 and hydrogen silsesquioxane. Notably, these conditions
significantly differ from the manufacturers’ recommendations for the recently commercialized
Mr-EBL resist. We demonstrate Mr-EBL to be a robust negative etch mask by etching silicon
trenches with aspect ratios of 10 and near-vertical sidewalls. Furthermore, our optimized
processing conditions are suitable to direct patterning on integrated circuits or delicate
nanofabrication stacks, in contrast to other negative tone EBL resists. In conclusion, Mr-EBL is a
highly attractive EBL resist for rapid prototyping in nanophotonics, MEMS, and fluidics.

Keywords: electron beam lithography, nanofabrication, reactive ion etching, Raman
spectroscopy, diffraction grating, negative tone resist, high sensitivity

(Some figures may appear in colour only in the online journal)

1. Introduction

Electron beam lithography (EBL) and direct-write electron
beam assembly are established techniques for rapid and
nanometer-scale device prototyping with applications in
photonics [1], electronics [2], 2D materials [3], and catalysts
[4]. EBL prototyping is particularly useful in nanoscale
photonics, where new paradigms of light manipulation can be
realized by creating solid-state structures with dimensions
similar to optical wavelengths (i.e. 0.1–2 μm).

EBL resists come in positive and negative tones. Positive
resists offer high resolution and easy removal, making for
excellent wet etch and lift-off masks in metal deposition. In

contrast, negative tone resists [5] cross-link into chemically inert
molecules, making for excellent masks in substrate dry etching
[6]. Additionally, processed negative resist becomes a permanent
structure, making it well suited to the direct fabrication of
nanoimprint lithography templates [7], or permanent optical
[8, 9], microfluidic [10], or microelectromechanical [11]
structures.

Contrast and sensitivity are key factors when choosing an
EBL resist. Contrast determines the minimum possible feature
size and sensitivity determines the speed of processing. The
two factors correlate strongly for negative EBL resists
(figure 1(a)) despite not being fundamentally related. Among
highly sensitive negative resists, SU-8 is the current gold
standard [12], despite low contrast limiting its resolution to
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∼100 nm. Widespread use of SU-8 is also limited by poor
adhesion to common substrate materials.

Other negative EBL resists, such as hydrogen silses-
quioxane (HSQ) and maN-2400, achieve excellent contrast and
resolution. However, these resists require large exposure doses
due to their low sensitivities: ∼300 μC cm−2 for maN-2400
[13] and ∼2000 μC cm−2 for HSQ [14] when processing with
a 100 kV electron beam. These high dose requirements limit
iteration speed and throughput during device prototyping.
Similarly to SU-8, maN-2400 adheres poorly to silicon and
glass, requiring extra adhesion promoting steps for successful
use [15]. For HSQ, a low refractive index (n=1.4) [16] limits
photonics applications where light manipulation is enabled by
the large refractive index difference between the device and its
surrounding medium. Finally, HSQ and maN-2400 are only
soluble in alkaline developers, which can strip off metal films
and make these resists incompatible with integrated circuits or
other supporting electronics.

In this paper, we demonstrate rapid and large-scale EBL
prototyping using the Mr-EBL 6000.3 (MicroResist Tech-
nology) negative tone resist. We fabricate a 100 mm2 dif-
fraction grating in a direct patterning approach that requires
less than 10 min. This capability establishes Mr-EBL as an
attractive resist for ultra-high-throughput EBL with sig-
nificantly accelerated nanofabrication speed when compared
to alternate resists. We show Mr-EBL to deliver state-of-the-
art sensitivity, excellent adhesion, high refractive index, and
organic solvent-based development. We present optimized
processing parameters for maximizing resolution and con-
trast. We conclude with pre- and post-processed chemical
analyses to identify the monomer cross-linking mechanism
induced during electron beam exposure.

2. Experimental methods

2.1. Application

We demonstrate the applicability of Mr-EBL to nanoscale
photonics by fabricating a large-area reflective diffraction
grating on silicon with a single-step direct patterning process.
We verify the grating by projecting a supercontinuum laser
source (EXU-6PP, NKT photonics) through a collimator and
onto the grating surface. The spectral bandwidth of the laser is
set to 100 nm around a center wavelength of 550 nm through
a tunable line filter (SuperK Varia, NKT Photonics).

2.2. Resist processing

Substrates are cleaned with acetone and isopropyl alcohol
before spin coating Mr-EBL at 6000 RPM for a nominal
thickness of 250 nm. To achieve a thickness of 50 nm, we
dilute one part Mr-EBL 6000.3 to three parts anisole. The
resist is soft baked for 3 min at 110 °C to evaporate the carrier
solvent (Anisole). The resist is exposed with an Elionix ELS-
G100 EBL system. The beam diameter is confined to 1.8 nm
by using a 100 pA beam current at 100 kV. Proximity error
correction software (Beamer) locally alters electron doses to
sharpen sparse patterns and prevent overexposure of dense
patterns. Following exposure, the resist is fully cross-linked
through a soft post exposure bake (PEB) for 1 min at 80 °C.
Crosslinked resist is developed for 5 min at room temperature
in propylene glycol methyl ether acetate (PGMEA, SU-8
developer, Microchem) or propylene carbonate (Alfa Aesar)
and then rinsed thoroughly with isopropyl alcohol. The pat-
terned resist is made permanent by hard baking for 120 min at
120 °C, with 15 min ramp-up and ramp-down times.

2.3. Characterization

2.3.1. Resolution. Resolution is determined by writing
15×15 μm patterns that vary line widths and spacings in
25 nm increments. Minimum widths consider the smallest
fully resolved and completely intact structures. Line edge
roughness conveys the reliability of resolving these minimum
widths. Resolution and line edge roughness values for the

Figure 1. (a) Sensitivity versus resolution for commonly used
negative tone electron beam lithography resists. (b) Reflective
diffraction grating fabricated with Mr-EBL resist. The diffraction
orders (m) are annotated. (c) The large-area (100 mm2) binary phase
grating is fabricated on silicon in under ten minutes. (d) Refractive
index versus wavelength in the VIS-NIR range for cross-linked Mr-
EBL resist.
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250 nm thick resist are determined through inspection on a
Zeiss Sigma VP scanning electron microscope at 20 kV with
3 mm working distance. Linewidths correspond to the mean
widths of the imaged lines and line-edge roughnesses are
determined by the standard deviations of the linewidths over
the 15×15 μm pattern, as calculated by image processing
algorithms in MATLAB.

The 50 nm thick resist was topographically imaged with
a Bruker Dimension Icon atomic force microscope (AFM).

2.3.2. Contrast. For negative tone EBL resists, contrast
refers to the width of the transition regime between the
highest exposure dose without cross-linking and the lowest
exposure dose to induce cross-linking. We calculate contrast
(γ) of the exposed 15×15 μm regions as [17]:
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where D90 corresponds to the clearing exposure dose for 90%
resist height retention after development (near-complete
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dose for 10% resist height retention after development
(minimal cross-linking). These doses are determined by
AFM-based topographic profiles of post-processed resist.

2.3.3. Raman spectroscopy. Elastic resonances of atomic
bonds are measured with a Renishaw InVia micro-Raman
using an excitation laser at 532 nm. Chemical compositions
are deduced from scattering peak locations and intensities in
the 0–3000 cm−1 range.

2.3.4. Refractive index. Refractive indices are determined
with a Woollam V-VASE ellipsometer. We model the
interaction between light and dielectrics with a Lorentz
oscillator function by fitting the real part of the refractive
index to polarization and intensity data collected from
reflecting light off of the resist. A two-term Sellmeier
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where A is a constant approximation for the short-wavelength
contribution, Bn are scaling constants and Cn are spectral
shifting constants.

2.4. Dry etching

Patterned resist is processed with an inductively coupled
plasma reactive ion etch (ICP-RIE). We investigate the etch
selectivity for two plasma chemistries: sulfur hexafluoride
(SF6) [19] and hydrogen bromide (HBr) [20] in an Oxford
PlasmaLab 100. The SF6 etching is conducted at 20 W for-
ward and 2000 W coil power, with SF6:C4F8:O2:Ar flowrates
of 30:30:5:30 SCCM at 8 mTorr pressure. The HBr etching is
conducted at 10 W forward and 1900 W coil power, with

20 SCCM flowrate at 20 mTorr pressure. After etching, any
residual resist is stripped by inductively coupled oxygen
plasma etching. Etched resist thickness and silicon trench
depth are measured using a Bruker Dektak-XT stylus profil-
ometer. The corresponding selectivities are determined by
comparing the resist and silicon etch rates.

3. Results

3.1. Rapid prototyping

Typical nanofabrication efforts incorporate complex and
serial steps of film deposition, lithography, etching, and resist
stripping. These processes greatly limit the throughput of
device prototyping, particularly in light conditioning appli-
cations underlying integrated photodetection [21], laser-to-
waveguide coupling [22], and photonic crystals [23]. We
substitute the multi-step fabrication processes for rapid direct
structure writing, demonstrating Mr-EBL to significantly
improve the speed, cost, and compatibility of rapid device
prototyping in nanophotonic and other applications.

We show Mr-EBL to be favorable to alternative negative
tone EBL resists when comparing the trade-offs between
resolution and throughput (figure 1(a)). Mr-EBL offers 3×
faster processing speeds and 25% better resolution when
compared to SU-8. When compared to HSQ and maN, Mr-
EBL offers 30–200× faster processing speeds with only a
4–8× loss in resolution.

We demonstrate a rapidly prototyped light conditioning
structure by directly writing a diffraction grating with Mr-
EBL (figure 1(b)). The resist’s high sensitivity allows for
writing of a large 100 mm2 binary phase grating onto a silicon
substrate in under 10 min.

The nanostructured Mr-EBL resist induces self-inter-
ference of an incident wave front to reflect light with a
wavelength-dependent angle. When a broad spectrum
incident light source is obliquely directed (ϑi = 45 ) at the
diffraction grating (figure 1(c)), the spectral-angular con-
ditioning reveals itself as color bands (figure 1(b)).

We verify the intended diffraction behavior by observing
one negative diffraction order (m=−1) and four positive
diffraction orders (m=1, 2, 3, 4) (figure 1(b)). At the m=0
diffraction order, the absence of light conditioning is revealed
by the circular non-diffracted pattern.

The observed diffraction patterns confirm that the Mr-
EBL resist was fabricated as intended. From left to right
(m=−1 to 4), the green bands (λ=550 nm) of the dif-
fraction orders (qm) are positioned at 90°, 45°, 23°, 6°, −11°
and −28° relative to the grating normal (figure 1(b)). These
angles coincide with the expected diffraction pattern, as pre-
dicted by the grating pitch (p), incident light angle (ϑi),
incident light wavelength (λ), and resist refractive index (n):

q q
l

= -
m
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asin sin . 3m i
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⎠⎟( ) ( )

Based on the EBL pitch of 1 μm and a measured refractive
index of 1.8 (figure 1(d)), we predict diffraction order
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angles of 90°, 44°, 23°, 6°, −12° and −31°, consistent with
observations.

We measure the refractive index of Mr-EBL to solve
equation (3) and verify the high refractive index across all
wavelengths of interest to photonics applications. Refractive
index values range from 1.51 to 2 in the near-infrared to the
visible spectrum, reaching up to 2.7 in the near-UV range
(figure 1(d)). The error bars correspond to the mean fitting
error over three devices. We attribute the larger error in the
450–600 nm spectrum to larger measurement noise caused by
ambient light. We note that the post-exposure refractive index
is negligibly different from the pre-exposure measurement.
The high refractive index is useful for photonic crystal or
diffraction grating applications where an index contrast to an
immersion or encapsulation medium (such as glass, aqueous
solution, or oil) is required.

Resist adhesion is found to be excellent to all silicon
and fused silica substrates, as assessed by applying and
pulling-off polyimide tape. Similar adhesion is not achieved
to noble metals, where the resist was pulled off during the
tape test. To achieve proper adhesion to inert polymer sub-
strates such as cross-linked SU-8, we treat the substrate
with a brief oxygen plasma, immediately followed by
spincoating hexamethyldisilazane (HMDS) until dry, before
spincoating Mr-EBL.

Throughout Mr-EBL processing, we never observe
peeling, resist cracking, delamination, or other indications of
film stress. Patterned resist structures are chemically inert, as
evidenced by being unaffected after 72 h immersions in
N-methylpyrrolidone at 100 °C (an aggressive resist-stripping
treatment).

3.2. Resolution

The clean and large-area pattern demonstrates successful Mr-
EBL writing with 150 nm minimum linewidth (figure 2(a)).
At the same critical dimensions, circles and squares retain
crisp edges with minimal distortion (figure 2(b)). Fabricated
linewidths of 152 nm are achieved for exposure widths of
150 nm, with only 20 nm line edge roughness (figure 2(c)).
Across figures 2(a)–(c), exposure doses are 14 μC cm−2 and
resist thickness is 250 nm. This thickness is well-suited to
nanophotonics applications as it represents a quarter-wave-
length optical path length difference for propagation of 600
nm light through the resist dielectric when interfaced with air.

The minimum Mr-EBL resolution is achieved by
decreasing resist thickness to 50 nm while retaining the
14 μC cm−2 exposure dose (figure 2(d)). The thinner resist
provides more favorable aspect ratios for small features, such
that 75 nm linewidths are achieved at 150 nm pitch. A single
line scan from the AFM image in figure 2(d) reveals structural
aspect ratios of 0.7 at the lateral resolution limit (figure 2(e)).
However, the line edge roughness at this thickness (3.9 nm,
averaged over two devices) precludes the resolution of
smaller feature sizes.

Because the thicker resist is better suited to photonics
applications, we return to 250 nm thick films to characterize
the dependence of linewidth and line edge roughness on the

exposure dose and PEB temperature (figure 3). Intermediate
dose rates (9–14 μC cm−2) and PEB temperature (80 °C)
achieve the best resolution of 150 nm (figure 3(a)), with a
structural aspect ratio of 1.7. For less optimized processing
conditions, the minimum resolutions are slightly larger
(200–300 nm) and line edge roughness are mostly unchanged
(20–30 nm) (figure 3(b)). Therefore, we determine the opti-
mal processing conditions as a 14 μC cm−2 dose and an 80 °C
PEB, for achieving a linewidth of 150 nm and a line edge
roughness of 16 nm. To further accelerate prototyping speed,
the same resolution is achievable with a lower dose of
10 μC cm−2, at the cost of slightly increased line edge
roughness.

3.3. Contrast

Contrast (γ) is an important figure of merit for resist perfor-
mance. High contrast indicates greater selectivity of the
developer to unexposed resist compared to exposed resist,
resulting in higher aspect ratios and better resolution during
EBL. We determine contrast values by measuring patterned
resist step heights for varying exposure doses and developer
solvents (figure 4), achieving maxima of γ=1.9 with

Figure 2. (a) Columbia University logo with minimum feature size of
150 nm; scalebar: 4 μm. (b) Circles and squares with feature sizes of
150 nm at a resist thickness of 250 nm; scalebar: 1 μm. (c) Lines
with 150 nm width and 300 nm pitch at a resist thickness of 250 nm;
scalebar: 1 μm. (d) Finest resolution lines with 75 nm width are
achieved at a resist thickness of 50 nm. Contour lines depict Mr-EBL
edges where resist heights reduce by half. (e) Single line scan for the
area imaged in (d).
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propylene carbonate (figure 4(a)) and γ=1.75 with the
manufacturer-recommended PGMEA (figure 4(b)). These
Mr-EBL contrast values are better than those achieved in SU-
8 [24, 25]. Similar to maN-2400 [5, 13], and lower than HSQ
[26]. Moreover, Mr-EBL is the only resist to offer organic
solvent-based development, which is more compatible with
integrated circuitry and other delicate nanofabrication stacks.
Similar efforts to develop HSQ with an organic solvent [27]
show strongly deteriorated resolution and line edge roughness
compared to alkaline solution development.

The contrast of the patterned Mr-EBL varies with PEB
temperature and developer choice. The optimal contrast
(γ=1.9) is achieved with propylene carbonate for an 80 °C
PEB and varies minimally across other experimental tem-
peratures (figure 4(a)). The small clearing dose of
10 μC cm−2 is consistent with using this exposure dose for
very high throughput EBL. The contrast decreases (γ=1.75)
and becomes more dependent on the PEB temperature for
PGMEA development (figure 4(b)). The worse contrast at
70 °C (γ=1.4) is due to reduced cross-linking reactions at
the lower temperature; the worse contrast at 90 °C (γ=1.55)

indicates excessive thermally-induced cross-linking at the
higher temperature, consistent with larger minimum line-
widths and line edge roughnesses (figure 3). We further
observe leftover resist residue after PGMEA development,
which is not present when developing with propylene car-
bonate. To even further improve EBL throughput, at the cost
of minimal resolution, we note that PGMEA reduces the
clearing dose to 7.5 μC cm−2 at 80 °C.

3.4. Dry etch selectivity

A popular use for negative tone resists is as dry etch masks
for ICP-RIE of silicon. In these applications, being chemi-
cally inert offers negative tone resists high etch selectivities
versus silicon [28–31].

We demonstrate Mr-EBL as a dry etch mask by trans-
ferring EBL patterns into silicon using ICP-RIE. The etching
fabricates high aspect ratio trenches with superb etch selec-
tivities for HBr and SF6 plasma chemistries (figure 5). We
note that SEM images in figure 5 are taken at the exposure
dose and dimension location in figure 2(c) after silicon
etching. During etching, the process is continued until all of
the resist is consumed.

Three-dimensional silicon aspect ratios of 10
(figures 5(a)) and 4 (figure 5(b)) are respectively achieved
with HBr and SF6 plasmas. HBr exhibits excellent selectivity
of 6.5× while SF6 is slightly worse at 2.5× (figure 5(c)). For
SF6, we attribute the slower initial etch rate to surface oxide
presenting an etch barrier. Near-perfect sidewall angles are
measured for trenches etched in HBr plasma (89°), with
slightly worse performance for SF6 plasma (78°). This dis-
crepancy is attributed to a more isotropic etch reaction

Figure 4. Resist height as a function of exposure dose and post
exposure bake (PEB), for (a) propylene carbonate and (b) propylene
glycol methyl ethylene acetate. For both developers, a PEB of 80 °C
achieves the optimal contrast.

Figure 5. Etch resistance and selectivity during inductively coupled
plasma reactive ion etching (ICP-RIE) of silicon using (a) SF6
plasma and (b) HBr plasma; scalebars: 1 μm. The highly selective
HBr plasma permits the fabrication of trenches deeper than 1.5 μm at
a width of 150 nm. (c) Table of etch results.

Figure 3. (a) Minimum EBL linewidth as a function of dose and post
exposure bake at a resist thickness of 250 nm. (b). Line edge
roughnesses for the resolutions in (a), defined as the standard
deviations of the linewidths.
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resulting in faster etching of edges when using SF6 [32]. The
etch selectivity of Mr-EBL in HBr plasma exceeds that of
maN-2400, HSQ [33] and SU-8 [12].

3.5. Chemical analysis

The pre- and post-exposure chemical structure of Mr-EBL is
integral to assessing its performance metrics and suitability to
prospective applications. However, this information is absent
from the manufacturer’s datasheet.

To address this, we perform pre- and post-exposure
chemical analysis and identify the cross-linking mechanism
that occurs during Mr-EBL processing. Upon electron beam
exposure and post-exposure baking, patterned Mr-EBL resist
is made insoluble through cross-linking of bisphenol A
(figure 6(a)) [34, 35]. The cross-linking reaction is catalyzed

by triarylsulfonium hexafluoroantimonate, which serves as a
deep UV and electron beam sensitive photo acid generator
[36–39]. The presence of these constituent molecules is
confirmed in the Raman spectra measured prior to the expo-
sure step (figure 6(b)). The pre-exposure spectrum also indi-
cates the presence of propylene carbonate solvent, which
enables uniform spin coating of the monomer-catalyst mix-
ture. Peaks in figure 6(b) are annotated according to the
relevant molecular bonds [40], for ease of correlation with the
structures shown in figure 6(a).

Bisphenol A polymerization during Mr-EBL processing
(figure 6(c)) is evidenced by alterations in the pre- and post-
exposure chemical compositions (figures 6(b), (d)). The dis-
appearance of the Raman peak at 1451 cm−1 (figure 6(d))
corresponds to a loss of terminal methyl groups [41]. This is
consistent with the cross-linking of these groups during for-
mation of a bisphenol A scaffold network (figure 6(c)) that
renders exposed resist insoluble to the developer. The
removal of the peak at 2666 cm−1 is attributed to evaporation
of propylene carbonate solvent and corresponding loss of the
carbonate bond [42]. We note that the photo acid initiator
remains present after cross-linking, as indicated by the sulfur
bonds around 620 cm−1 [43, 44].

4. Discussion

The most widely used negative tone EBL resists are limited in
their processing speed and compatibility with integrated cir-
cuits or complimentary nanofabrication protocols. This work
establishes Mr-EBL 6000.3 as a negative tone EBL resist for
overcoming these limitations, particularly in direct fabrication
of durable structures for nanophotonics applications.

The suitability of Mr-EBL to rapid prototyping of
nanophotonic devices is demonstrated through the fabrication
of a large-scale optical diffraction grating in a direct write
process. The 100 mm2 optical grating is fabricated in under
ten minutes.

Optimized Mr-EBL processing parameters are provided
for achieving a lateral resolution of 150 nm with a resist
thickness (250 nm) ideal for the conditioning of visible light.
A minimum lateral resolution of 75 nm is achieved with
thinner resist films (50 nm). For applications with larger cri-
tical dimensions (i.e. 200–300 nm), even faster processing
speeds are achievable.

As a dry etch mask, we show Mr-EBL to present high
etch selectivity over silicon, enabling the fabrication of deep
silicon trenches with near-perfectly vertical sidewalls.

We augment the current understanding of the underlying
Mr-EBL chemistry by describing the molecular cross-linking
induced during electron-beam excitation and thermal
catalysis.

Compared to alternative negative tone electron beam
resists, we highlight three distinct advantages of Mr-EBL:
(i) high sensitivity enables fast iteration of very large-scale
device fabrication; (ii) organic solvent development greatly
improves the resist compatibility with integrated circuits or
typical nanofabrication stacks; and (iii) high refractive index

Figure 6. (a) The unexposed resist is a mixture of bisphenol-A and
triarylsulfonium hexafluoroantimonate. (b) Raman spectrum of
unexposed resist. (c) The resist cross-links at the methyl groups,
creating a scaffold molecular structure. (d) Raman spectrum of
exposed resist on silicon. The Raman spectra are corrected for the
sloping baseline.
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over the visible spectrum provides a suitable index contrast
for light conditioning with a wide spectrum of immersion
media.

With our optimized processing, Mr-EBL addresses many
of the limitations of SU-8. Mr-EBL improves by half the
200 nm minimum resolution achieved for dense patterning of
thin SU-8 [12, 45–47]. The lower contrast of SU-8 is due to
fundamental chemical effects that causes incident electron
energy to propagate further into the nearby regions and
backscatter more heavily [48–50]. Several non-commercially
available resists claim sensitivity comparable to Mr-EBL at
100 nm resolution, but do not show intact structures [51] or
dense features [52].

It is important to note that our findings disagree with the
manufacturer’s datasheet on several optimized processing
parameters [53]. First, we found that the recommended PEB
(110 °C, 5 min) strongly limits resolution due to excessive
thermally-induced cross-linking. Second, we observe
increased sensitivity at our higher accelerating voltage,
despite the expectation that greater electron mean free path
reduces sensitivity at high voltages. We suspect our sensi-
tivity improvement is due to exposure optimization using the
Beamer software.

Finally, all the above-noted advantages of Mr-EBL are
achieved without compromising contrast, resolution, or ease
of use. These characteristics make Mr-EBL a promising
material for rapid development of nanoscopic devices across
many fields including nanophotonics, fluidics, microelec-
tromechanical systems, and more.
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