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ABSTRACT: Recent work has pushed the noise-limited
bandwidths of solid-state nanopore conductance recordings to
more than 5 MHz and of ion channel conductance recordings
to more than 500 kHz through the use of integrated
complementary metal-oxide-semiconductor (CMOS) inte-
grated circuits. Despite the spectral spread of the pulse-like
signals that characterize these recordings when a sinusoidal
basis is employed, Bessel filters are commonly used to denoise
these signals to acceptable signal-to-noise ratios (SNRs) at the
cost of losing many of the faster temporal features. Here, we
report improvements to the SNR that can be achieved using
wavelet denoising instead of Bessel filtering. When combined
with state-of-the-art high-bandwidth CMOS recording in-
strumentation, we can reduce baseline noise levels by over a factor of 4 compared to a 2.5 MHz Bessel filter while retaining
transient properties in the signal comparable to this filter bandwidth. Similarly, for ion-channel recordings, we achieve a
temporal response better than a 100 kHz Bessel filter with a noise level comparable to that achievable with a 25 kHz Bessel
filter. Improvements in SNR can be used to achieve robust statistical analyses of these recordings, which may provide important
insights into nanopore translocation dynamics and mechanisms of ion-channel function.
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Ion-channel proteins are responsible for regulating the cellular
concentrations of ions by virtue of their ion selectivity and

gating behavior. Ionic fluxes regulate key cellular functions such
as muscle contraction, hormone and neurotransmitter release,
and the growth and death of cells, rendering these proteins
important pharmaceutical targets.1,2 Physiological studies
focused on the functional behavior of single ion channels
typically involve measuring the transmembrane current in
response to electrical or chemical stimuli.2 The observed gating
behavior and its associated temporal dynamics provide insights
as to the structure and function of ion channels.
Nanopores, analogs of leak ion channels, are nanometer-sized

openings created in a thin membrane. Depending on the nature
of the membrane, nanopores are either biological or solid-
state.3−5 While not generally gateable, the temporal dynamics of
the translocation of biopolymeric molecules through these pores
in response to electrical gradients are similar to those exhibited
by gated channels. Translocation of a molecule through the pore
transiently blocks ionic conduction, and the resulting current
blockage can then be used to study transport velocity,6,7 effective
molecular charge,8,9 polymer lengths,10 and the molecule’s

conformation11−13 during translocation. Significant work over
the past few years has been directed toward the fabrication of
solid-state nanopores with dimensions comparable to those of
biological ion channels,14−16 which have been applied to the
detection of many different analytes.11,13,17−20

The front-end measurement circuitry for recording signals
with both ion channels and nanopores consists primarily of a
transimpedance amplifier (TIA). The sensor in either case can
be modeled as a resistor in parallel with a capacitor and a current
source as shown in Figure 1a. While improving the temporal
resolution of these recordings is desirable for many reasons,
several sources of noise (Figure 1b) limit the available SNR at
any given frequency, where SNR = ΔI/IRMS with ΔI being the
amplitude of the pulse-like signal and IRMS being the standard
deviation of the baseline noise in the time trace. At low
frequencies, flicker noise from the measurement electronics and
the channel/pore leads to a 1/f characteristic in the power
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spectral density.21,22 The noise in the mid frequencies is
spectrally white and is dominated by thermal and shot noise
from the channel/pore,22−24 whereas the high-frequency noise
is dominated by loss mechanisms in the membrane dielectric
that increase linearly with frequency, and the amplifier’s input-
referred voltage noise vn interacting with the total capacitance
ΣCi at the amplifier’s input, which appears with an f 2

dependence on frequency.22,24 Assuming thatΔI is large enough
to yield sufficient SNR to operate in the high-frequency regime
and the noise is dominated by the measurement electronics
(which characterizes the experimental conditions considered
here), the maximum available bandwidth is governed by:

∝ Δ
∑( )B I

v Cmax

2/3

n i
. Several efforts have shown ways of

improving the SNR and, consequently, Bmax through careful
design of the front-end amplifier25 and through tight integration
of sensor and custom-designed complementary metal-oxide-
semiconductor (CMOS) electronics in the context of both ion
channels and solid-state nanopores.19,20,26−30

A standard technique for improving SNR after measurement
is to low-pass filter the data, sacrificing bandwidth and, therefore,
temporal resolution in the signal to reduce noise. Bessel filters
are generally employed for this purpose because of their uniform
group delay characteristics.31 In addition to Bessel filters, other
denoising approaches that rely on hidden Markov models
(HMMs) have been applied to both nanopore32,33 and ion-
channel recordings.34−36 However, these techniques require
assumptions to be made about the underlying model and are, in
general, more computationally expensive than the denoising
technique explored here. This computational complexity further
increases in the context of signals corrupted by f 2 noise, where
“meta-states” may need to be introduced to deal with the
correlation between noise in adjacent data points.35

In this Letter, we report on SNR improvements that can be
attained by applying a wavelet denoising technique to high-
bandwidth conductance data obtained using integrated CMOS
electronics, which represent the fastest such recordings to
date.19,30 Wavelet transform and denoising of time-series data

has been explored in a wide variety of contexts.37−41 While there
has been some prior work applying wavelet denoising
techniques to data from ensemble ion channels,42 Coulter
counter,43 and nanopores,44 the intrinsic SNR available in these
studies has been relatively low due to the absence of electronics
optimized for high-bandwidth measurements.
Figure 1c shows an idealized representative noise-less pulse.

Because the Fourier transform uses sinusoids that exist for all
time as its basis functions, the representation of a short-lived
pulse in such a basis is not sparse (Figure 1d). As a result, a low-
pass filter designed in the frequency domain used to improve
SNR by reducing noise levels will result in a smoothed version of
the signal in the time domain. In contrast, the wavelet transform
(Figure 1e) yields a set of approximation and detail coefficients
at each level of decomposition that correspond approximately to
the low- and high-frequency components of the signal,
respectively, at that level.45 The result is a much sparser
representation of the signal that allows more-aggressive filtering
of the noise, which is spread out across coefficients, to be
performed without significantly affecting the time-domain
characteristics of the signal.
In the wavelet transform, the coefficients at a given level are

obtained by convolving the approximation coefficients of the
previous level (or the signal itself at the first level) with the
scaling and wavelet functions and their translated versions.
Changing the level of decomposition is achieved by changing the
dilation factor for these functions. Specifically, in the denoising
that we present here, we consider only the dyadic case in which
the dilation factor is two and translations are only by integer
amounts. The sparsity in the coefficients obtained using the
wavelet transform is due to the compact support of the wavelets
employed (in our case, the biorthogonal wavelet46,47 1.5; see the
Supporting Information).
The wavelet transform has been the focus of extensive work

and is commonly used in image compression algorithms.45,48

The most-common version of the wavelet transform, called the
discrete wavelet transform (DWT), decimates the wavelet
coefficients by a factor of 2 at each decomposition level. This
results in a non-redundant representation of the signal, such that

Figure 1. Typical measurement setups for nanopore and ion-channel recordings. (a) Equivalent circuit representation of a nanopore/ion channel
sensor and the front-end amplifier circuitry for recording from these sensors. (b) Input-referred noise spectral density with the various dominant noise
sources as a function of frequency in these systems. (c) Idealized input signal and its transformations using (d) the Fourier transform (FT) and (e) the
stationary wavelet transform (SWT). Compared to the FT, the SWT offers a sparser representation of the input signal.
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a signal of length N yields N corresponding wavelet coefficients.
However, this transformation is not translation-invariant, which
can create artifacts during reconstruction after denoising.49 As a
result, the studies here instead employ the stationary wavelet
transform (SWT), which yields a redundant representation of
the signal, givingN detail coefficients per level of decomposition
andN approximation coefficients at level J for a total ofN(J + 1)
wavelet coefficients for J levels of decomposition. Denoising50

using the wavelet transform consists of the following steps:

1. choose a wavelet basis;

2. choose the maximum decomposition level J;

3. compute the wavelet transform for the signal x[n] to
obtain detail coefficients wj,k and approximation coef-
ficients aJ,k, where j = 1, ..., J and k = 1, ..., N;

4. calculate the noise threshold λj for wj,k;

5. choose a thresholding scheme T and threshold wj,k to
obtain w′j,k = T(wj,k); and

6. perform the inverse wavelet transform using aJ,k and w′j,k.

For good denoising, the wavelet basis must be chosen so as to
concentrate the signal information in a few high-valued
coefficients while the noise is spread uniformly over coefficients.
For this study, we used the biorthogonal 1.5 wavelet (see the
Supporting Information for details). Higher values of J lead to
increased noise reduction at the expense of potentially greater
smoothing of the signal. The root-mean-square (RMS) noise
level σj of the detail coefficients can either be estimated by using
t h e m e d i a n a b s o l u t e d e v i a t i o n (MAD ) a s

σ =
| − |

j
w wmedian( mean( ) )

0.6745
j k j k, , or, if available, can be directly

calculated from the wavelet transform of pure-noise data.
Several schemes exist to calculate λj once σj is known, such as the
universal threshold,50 level-dependent threshold (LDT),51

Stein’s unbiased risk estimate (SURE),52 minimax threshold,50

or Bayesian threshold.53 Of these, we employ the LDT due to its
simplicity and robustness. The LDT is calculated as

λ σ= N(2ln( ))j j j where Nj is the number of detail coefficients

wj,k at decomposition level j, and is N in the case of the SWT.

Figure 2. Performance comparison of wavelet denoising (5-level, LDT, garrote) vs standard Bessel filters for simulated noisy pulses. The data are
generated at 40 MSPS with a baseline of 0 and an amplitude of −10 nA. (a) Representative time trace of a 1 μs long pulse corrupted by white noise at
the worst-case initial SNR of∼2 dB filtered by 1, 2.5, 5, and 10MHz fourth-order Bessel filters and wavelet denoising. (c) For the same pulse width of 1
μs and corruption by white noise to a range of initial SNR values, wavelet denoising offers consistent reductions in baseline noise levels (averaged over
100 repetitions) compared with 1, 2.5, 5, and 10MHz fourth-order Bessel filters. Because the amplitude of the signal remains unchanged in all of these
cases, this directly translates to an improved SNR. (e) For 500 simulated pulses with widths ranging from 0.1 to 1 μs and an initial SNR of 14 dB,
wavelet denoising retains the pulse width information better than both the 1 and the 2.5 MHz filters. Panels b, d, and f are the same as panels a, c, and e
except for the noise source, which is f 2 instead of white. Here, wavelet denoising offers increased improvement in SNR and has shape retention similar
to that of the 2.5 MHz filter.
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Choosing the right threshold plays a critical role in the trade-off
between the denoising and smoothing of the signal. Once λj has
been determined, several options exist for the choice of T, such
as the classical hard and soft,50 firm,54 non-negative garrote,55

and others56,57 (see the Supporting Information for details). In
general, hard thresholding preserves edge sharpness better but
can suffer from artifacts caused by noise coefficients slightly
larger than the threshold being preserved unaltered. On the
other hand, soft thresholding is more immune to these artifacts
but provides greater smoothing of the signal. For the nanopore
data, we used the garrote thresholding scheme given by:

λ
λ

λ λ
=

| | ≤

− | | >

l
m
ooooo

n
ooooo

T x
x

x
x

x
( , )

0 if

if
2

Garrote thresholding offers a good compromise between hard
and soft thresholding by providing good noise immunity for
coefficient values close to λ while leaving the large-valued
coefficients largely untouched. For the ion channel data, we
observed that the garrote thresholding method behaves almost
identically to the soft thresholding method. As a result, we used
hard thresholding that yields sharper rising and falling edges
without significantly increasing noise levels. We implemented all

of our wavelet signal processing in Python using the PyWavelets
module.
We tested the wavelet denoising method first on simulated

data with either of two spectrally distinct kinds of noise added to
it: white or f 2 (see the Supporting Information for details). The
latter is particularly relevant for high-bandwidth current
measurements using a TIA-like front-end.24 The wavelet
denoising schemes evaluated in this work assume that the detail
coefficients obey a Gaussian amplitude distribution. Strong
noise components at individual frequencies, as is the case with
electromagnetic interference, could violate this assumption and
lead to ineffective denoising performance. In general, the effect
of such noise sources can be mitigated during the measurement
by shielding. We simulated the data assuming a sampling rate of
40 MSPS and padded the pulse with 5000 points on each side.
Representative 1 μs pulses are shown in Figure 2a,b at the worst-
case initial SNR of∼2 dB processed by fourth-order Bessel filters
with cutoff frequencies at 1, 2.5, 5, and 10 MHz and by wavelet
denoising. We note that while we treat the simulated signal to be
a current waveform, wavelet denoising can be applied to other
signals with similar temporal characteristics.
Panels c and d of Figure 2 show the SNR improvement offered

by wavelet denoising compared with the Bessel filters over a
range of initial SNR values. This is necessary because, unlike the
Bessel filters, wavelet denoising is a nonlinear technique and its

Figure 3. Denoising of high-bandwidth solid-state nanopore recordings. The data were obtained using a system with an acquisition rate of 40 MSPS
and a hardware fourth-order Bessel filter at 10MHz. (a) Schematic of the cross-section of the glass-passivated nanopore (not to scale) and TEM image
of the 1.2 nm× 1.7 nm diameter nanopore used in this study. (b) Time trace of 90-nucleotide-long ssDNA translocation through the nanopore in 3M
KCl at 700 mV bias. The same signal segment is filtered to different bandwidths using Bessel filters implemented in software vs eight-level SWT
denoising with LDT and garrote thresholding. The numbers in the legend indicate the noise level (in pARMS) calculated over a 1 ms window. The
expanded time trace of a single event shows that wavelet denoising offers shape retention better than the 1MHz filter and comparable to that of the 2.5
MHz filter. (c) Amplitude vs dwell-time histogram showing that the wavelet denoised trace statistically offers nearly identical performance compared to
the 2.5 MHz filter with <4 times the baseline noise level. Events here were identified as having a minimum deviation of 8σ from the baseline.
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performance is dependent on the signal amplitude relative to
that of the noise. When averaged over 100 simulations for both
white and f 2 noise, five-level SWT denoising with LDT and
garrote thresholding offers SNR improvement compared with all
of the Bessel filters tested here. These improvements in noise
performance also persist over a range of initial SNR values.
Panels e and f of Figure 2 show that wavelet denoising offers

good signal-shape retention compared to the same set of fourth-
order Bessel filters, when the initial pulse width is varied from
100 ns to 1 μs. The dwell time here is calculated as the full-width-
at-half-maximum. For a denoising scheme that does not result in
any signal distortion, the scatter plot would be along the straight
line y = x. With white noise, the dwell time performance of
wavelet denoising is better than that of the 2.5MHz Bessel filter,
whereas with f 2 noise, the two perform similarly. This temporal
performance is achieved with a simultaneous SNR improvement
of 5.5 and 17 dB (Figure 2c,d) when the noise shape is white and
f 2, respectively. In scenarios with multiple events, spacing
between events does not strongly affect the performance of
wavelet denoising (see the Supporting Information for details).
Given the improvements that wavelet denoising can offer in a

simulated context, we applied this technique to high-bandwidth

nanopore recordings. These data are obtained using an
integrated CMOS transimpedance amplifier described else-
where.19 We packaged the amplifier with glass-passivated58

ultrathin16 nanopores to measure translocations of 90-
nucleotide ssDNA in 3 M KCl. This combination of tightly
integrated custom amplifiers and low-capacitance nanopore
membranes allows us to achieve SNRs of better than six at 10
MHz bandwidth. The signals presented here were obtained
using a 1.2 nm × 1.7 nm pore (Figure 3a) at 700 mV of applied
bias (see the Supporting Information for details). Figure 3b plots
a 200 ms time trace comparing the raw data filtered by fourth-
order Bessel filters with cutoff frequencies of 500 kHz, 1 MHz,
2.5 MHz, and 5 MHz, and the same data processed with eight-
level wavelet denoising using LDT and garrote thresholding.
The numbers in the legend indicate the baseline noise level, as
calculated from the standard deviation of the time trace over an
event-free 1 ms window. In these measured data in which both
white and f 2 noise contaminate the signal of interest, wavelet
denoising performs remarkably well, offering lower noise than
that achieved even with a 500 kHz Bessel filter, reducing noise by
approximately 12 dB compared to the 2.5MHz Bessel filter. The
2.5 MHz Bessel filtered output most closely matches the

Figure 4.Denoising of high-bandwidth ion-channel recordings. The data were obtained using a systemmeasuring RyR1 activity at 200 mV bias in 1M
KCl with 1 mM ATP. The measurement system has an acquisition rate of 40 MSPS and a hardware fourth-order Bessel filter at 10 MHz. The data are
then filtered using a 1MHz fourth-order Bessel filter and downsampled to 4MSPS. (a) Schematic of the ion-channel measurement apparatus. A single
RyR1 channel is incorporated into a suspended lipid bilayer created on an SU-8 well fabricated directly on top of the CMOS amplifier chip. (b) Time-
trace of the same signal segment filtered to different bandwidths using Bessel filters implemented in software vs seven-level SWT denoising with hard
thresholding using LDT thresholds extracted from noisy data. The upward spikes in the wavelet denoised trace are artifacts created by the hard
thresholding scheme and are infrequent enough to not significantly affect statistical performance. The expanded trace of a single event shows that
wavelet denoising offers shape retention better than that of the 100 kHz filter and significantly better than the 25 kHz filter. (c) All-points amplitude
histogram with the Y axis showing the bin count on a logarithmic scale. Wavelet denoising has noise performance comparable to that of the 25 kHz
filter, as shown by the width of the peak near the open channel current.
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temporal characteristics preserved by wavelet denoising, as
shown by the trace of a single event in Figure 3b and the
amplitude versus dwell-time histogram in Figure 3c.
We also applied this denoising technique to data obtained

from high-bandwidth ion-channel recordings of the Type 1
ryanodine receptor (RyR1) using the same CMOS-integrated
amplifiers30 (Figure 4a). RyR1 is a Ca2+-induced Ca2+ release
channel that is found on the sarcoplasmic reticulum in skeletal
muscle. The data shown here were recorded at 200-mV bias
applied across a single RyR1 channel incorporated in a
suspended lipid bilayer immersed in a solution containing 1
mM of adenosine triphosphate (ATP) and 40 μM of unbound
Ca2+ (see the Supporting Information for details). The signals
were obtained using the same 40 MSPS acquisition system,
filtered using a 1 MHz fourth-order Bessel filter and down-
sampled to 4 MSPS. Figure 4b shows a 1 s time trace comparing
the outputs of fourth-order Bessel filters with cutoff frequencies
of 25, 100, and 250 kHz with seven-level wavelet denoising using
hard thresholding. We extract the thresholds used for wavelet
denoising from the wavelet transform of pure-noise data
recorded before the start of the actual experiment. The upward
spikes (see the Supporting Information for details) visible in the
wavelet-denoised time trace are an artifact of the hard
thresholding scheme and are easily discarded because of their
nonphysical nature. The expanded traces shown in Figure 4b
indicate that the wavelet-denoised data retain temporal features
better than those seen in the 100 kHz Bessel filtered data. The 25
kHz filter, on the other hand, significantly attenuates the
amplitude of short-lived events. The all-points amplitude
histogram in Figure 4c reveals two key findings. First, wavelet
denoising offers noise performance comparable to that of the 25
kHz filter as shown by the width of the peak near the open
channel current. Second, wavelet denoising preserves inter-
mediate states in the histogram that are rendered invisible by the
surrounding noise in the 100 kHz filtered data. The fact that the
same peaks show up in the histogram for the 25 kHz filtered data
confirms that these features are real and not an artifact of the
wavelet denoising process.
Many ion channels including RyR1 have been implicated in

major human diseases including heart failure,59 sudden cardiac
death,60 and muscular dystrophy.61 Combined with recently
achieved high-resolution cryogenic electron microscopic
structures,62,63 improved SNR recordings hold the promise to
provide important insights concerning ion-channel regulation
and mechanisms of dysfunction linked to human diseases that
may lead to new therapies. Greater edge sharpness in nanopore
recordings will particularly help in analyte-detection experi-
ments in which the accurate estimation of the dwell time is
necessary.64,65

In this work, we have applied wavelet-denoising techniques to
improve SNR in nanopore and ion-channel recordings. These
improvements are achieved without sacrificing edge sharpness in
temporal signal characteristics. Consequently, wavelet denoising
can offer better SNR than the optimal Bessel filter2 for a given
pulse width. Combined with optimized measurement elec-
tronics to extend measurement bandwidth, this technique can
enable high-fidelity and high-bandwidth analyses of conduc-
tance data characterized by pulse-like signals.
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