Measurement and Regulation of On-Chip Supply Noise

Elad Alon
Mark Horowitz

• Computer Systems Laboratory
• Stanford University
Scaling and Supply Impedance

- CMOS scaling led to lower supply voltages and constant (or increasing) power consumption
- This forces drastic drop in supply impedance
 - Even at constant power:
 - $V_{dd} \downarrow$, $I_{dd} \uparrow \rightarrow |Z_{required}| \downarrow \downarrow$
- Today’s chips:
 - $|Z_{required}| \approx 1 \text{ m}\Omega$
- Hard to achieve across broad frequency spectrum
 - Supply voltage will be noisy
Outline

• Motivation

• Supply Noise Measurement

• Regulation and Power Efficiency

• Conclusions
Review of Previous Approaches

- Sub-sampling to avoid high-speed interfaces or converters
 - Just like equivalent time oscilloscopes
- Very good at measuring repetitive (deterministic) waveforms
 - Can also collect statistical distribution of noise
- However, can’t measure “random” noise dynamics
Measured Supply Noise from 90nm Itanium Microprocessor

Measuring “Random” Supply Noise

• Supply noise is basically deterministic
 • But extremely complicated to calculate

• “Noise” is a label for a random process
 • Can be characterized by its frequency spectrum

• Measure **autocorrelation** to find spectrum of supply noise
 • Extension of sub-sampling technique
 • Only needs 2 low rate samplers
Autocorrelation Review

- Autocorrelation measures how correlated a process is with a delayed version of itself.

- For a stationary (time-invariant) process:
 - \(R(\tau) = E[V(t-\tau/2) \cdot V(t+\tau/2)] \)

- Power Spectral Density (PSD) is Fourier Transform of \(R(\tau) \):

 Band-limited Noise:

 \[R(\tau) \quad \tau \]
 \[\text{PSD} \quad \omega \]
Measuring Autocorrelation

- Autocorrelation is an average property
 - Don’t need V for all t – just need sample pairs

- Nyquist frequency set by minimum τ
 - Not by sampling rate

- Can extend to cyclostationary noise too
 - Noise properties vary repetitively with time
Measurement System Block Diagram

Sampler Implementation

Sampling Switch

VSD

Vsd*

VCO-based ADC

Buffer

Vdd*

Vdd

Counter

Cnt_clk

VCO

Samp

Samp

VCO-based ADC
VCO-based ADC

- **Simple, cheap ADC**
 - Scan circuitry bigger than ADC

- **High Resolution**
 - $1 \text{ LSB} = \frac{1}{(T_{\text{win}}K_{\text{VCO}})}$
 - Can increase resolution with external averaging too
 - VCO random phase creates dither – whitens the quantization noise

- **Bad accuracy**
 - But don’t care since we’re calibrating
Measured Chips

- Measurement circuits included in several chips:
 - Rambus (0.13 µm, 90 nm SOI), Intel/HP (90 nm, 45 nm), AMD (65 nm SOI), TI (90 nm), NEC (90 nm)

- 1st chip: Rambus 0.13 µm serial transceiver
 - Could measure V_{dd} (link digital supply) and V_{ddA} (link analog supply)
Measured PSD

- Measured PSDs with system off (noise floor), then all 4 links running at 4 Gb/s
- Peaks mostly from repetitive waveform
 - 4 GHz on V_{ddA}: differential 2 GHz clock
- Random noise has some peaking on V_{dd}
 - Otherwise looks white
Averaging-Based Measurement

- Exploit VCO dither:
 - Averaging dithered low-resolution samples can reconstruct waveforms and autocorrelation
- Sampling switch was for long T_{win} (to get resolution)
 - Low resolution \rightarrow short T_{win}
 - No need for sampling switch

Outline

• Motivation
• Supply Noise Measurement

• Regulation and Power Efficiency

• Conclusions
Supply Noise and Digital Logic

- Since gate delay depends on V_{dd}:
 - To hit a desired frequency
 - Need to guarantee some minimum voltage

- Supply variations force higher nominal voltage
 - Looks like another source of power loss

- Can regulators be efficient enough to improve power by reducing noise?
 - Regulator power needs to be less than recovered power
Linear Regulators

Series Regulator

Shunt (Parallel) Regulator
Improved Efficiency with Series Regulator?

- Clearly won’t meet efficiency goal:
 - Regulator doesn’t really change noise on V_{dd}
 - So still need same margin
 - But added an extra V_{drop} from variable resistor…
Improved Efficiency with Shunt Regulator?

- Regulator can only pull current out of supply
 - To counter noise in both directions, need to burn significant static current
 - Again, clearly inefficient

- Need to allow shunt to deliver energy to the load
 - Not just dissipate it
Push-Pull Shunt Regulator

- Use an additional, “shunt” supply to push current into V_{reg}
 - Regulator capable of countering large variations
 - But regulator loss set mostly by (significantly smaller) average variation

- Similar to Active Clamp* for board VRMs
 - Build on previous work to improve on-die impedance

Quiescent Output Current

- Went to push-pull to minimize regulator power overhead
- But many designs have significant I_{static}
- Similar issues in RF and audio power amplifiers
 - In all cases, need to efficiently deliver energy based on a (small) input signal
- Build on PA knowledge to achieve high efficiency:
 - Non-linearly switch the output power devices
Switched-Output Regulator: Comparator Feedback with Dead-Band

- Need to convert small signal on V_{reg} into full-swing to drive switch
 - Use comparator in feedback path

- To avoid unnecessary limit cycle:
 - Offset thresholds to create dead-band
Noise Reduction and Power Efficiency

- Measured results from 65 nm SOI AMD test-chip:
 - Regulator reduces noise by ~30%
 - Reduces overall power dissipation by ~1%

- Transistors slower than expected
 - Expect to reach ~50% noise and ~4% power reduction
Outline

• Motivation
• Supply Noise Measurement
• Regulation and Power Efficiency

• Conclusions
Conclusions

- Voltage scaling made power supply noise a significant source of variability

- Noise measurements needed to validate CAD tools, tune design
 - Fortunately, can be done with relatively simple circuits

- Variations in supply hurt power efficiency
 - But can reduce both noise and power with carefully designed regulator