CMOS fluorescence-based active microarrays

This project is a multidisciplinary effort to novelly exploit CMOS silicon microelectronics in the design of low-cost, portable, self-contained “gene chip” technology for nucleic acid measurement and detection. Much of this effort is focussed on developing active substrates based on fluorescence detection. One such active microarray is shown below, capable of time-resolved fluorescence detection for background rejection (though time-gating) and fluorescence-lifetime measurement. DNA probe is attached directly to the chip surface for detection.

Related Publications

T.-C. Huang, S. Sorgenfrei, K. L. Shepard, P. Gong, and R. Levicky, “A CMOS array sensor for sub-800-ps time-resolved fluorescence detection” IEEE Custom Integrated Circuits Conference, 2007.

This paper describes the design of an active CMOS sensor array for fluorescence applications which enables timegated, time-resolved fluorescence spectroscopy. The 64 x 64 array is sensitive to photon densities as low as 8 x 106 photons/ cm2 with 64-point averaging and, through a differential pixel design, has a measured impulse response of better than 800 ps. Applications include both active microarrays and high-frame-rate imagers for fluorescence lifetime imaging microscopy.

Continue reading →

D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode imager for fluorescence lifetime applications” Symposium on VLSI Circuits, 2007, pp. 144-245.

A 64-by-64-pixel CMOS single-photon avalanche diode (SPAD) imager for time-resolved fluorescence detection features actively quenched and reset pixels, allowing gated detection to eliminate pile-up nonlinearities common to most time-correlated single-photon counting (TCSPC) approaches. Reset Timing information is collected using an on-chip time-tocalb calibrated digital converter (TDC) based on a counter and a supply- interpolators regulated delay-locked loop (DLL).

Continue reading →

G. Patounakis, K. L. Shepard, and R. Levicky, “Active CMOS array sensor for time-resolved fluorescence detection” IEEE Journal of Solid-State Circuits, November, 2006

Surface-based sensing assays based on fluorescence-based detection have become commonplace for both environmental and biomedical diagnostics. Traditional array scanners are expensive, large, and complex instruments. This paper describes the design of an active CMOS biosensor substrate for fluorescence-based assays that enables time-gated, time-resolved fluorescence spectroscopy without the need for an external reader. The array is sensitive to photon densities as low as 1 15 108 cm2, has a dynamic range of over 74 dB, and has subnanosecond timing resolution. Sensitivity is achieved through subsampling and averaging.

Continue reading →

G. Patounakis, K. L. Shepard, and R. Levicky, “Active CMOS biochip for time-resolved fluorescence detection” Symposium on VLSI Circuits, 2005.

Continue reading →

Fluorescence Lifetime Imagers

Traditional Fluorescence Lifetime Imaging Microscopy systems use laser scanning techniques in concert with a single photon detector, such as a photomultiplier tube or avalanche photodiode, to construct lifetime based images using Time Correlated Single Photon Counting (TCSPC).  In order to acquire enough data within each pixel to determine the lifetime, thousands of samples must be taken.  As a result, the time required to capture a single frame can be several to tens of seconds, which presents a limit to the types of biological processes that can be monitored using FLIM.  The focus of this project is creating a CMOS-based Single Photon Avalanche Diode (SPAD) array that is capable of acquiring multiple frames per second, which would make real-time FLIM imaging of biological processes possible.

Our most recent array design was capable of a maximum frame rate of 3.9 Hz and consisted of a 64 x 64 SPAD array with integrated timing and pixel control circuitry in 0.35μm technology. The image on this page below shows a FLIM image of quantum dots (in color) next to a CCD image showing the location of the quantum dots on the array.

 

Our recent efforts are focused on developing a SPAD array in a standard CMOS process flow for a more advanced technology node. We have developed a low-noise SPAD in 0.13μm technology that will enable higher imaging rates through improved circuit performance. A full imaging array based on this SPAD design is currently under development.

Related Publications:

R. M. Field, J. Lary, J. Cohn, L. Paninski, and K. L. Shepard, “A low-noise, single-photon avalanche diode in standard 0.13 μm complementary metal-oxide-semiconductor process,” Applied Physcis Letters, 97, 211111 (2010).

Data Download

We present the design and characterization of a single-photon avalanche diode SPAD fabricated with a standard 0.13 m complementary metal-oxide-semiconductor process. We have developed a figure of merit for SPADs when these detectors are employed in high frame-rate fluorescent lifetime imaging microscopy, which allows us to specify an optimal bias point for the diode and compare our diode with other published devices. At its optimum bias point at room temperature, our SPAD achieves a photon detection probability of 29% while exhibiting a dark count rate of only 231 Hz and an impulse response of 198 ps.

Continue reading →

D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode imager for fluorescence lifetime applications” Symposium on VLSI Circuits, 2007, pp. 144-245.

A 64-by-64-pixel CMOS single-photon avalanche diode (SPAD) imager for time-resolved fluorescence detection features actively quenched and reset pixels, allowing gated detection to eliminate pile-up nonlinearities common to most time-correlated single-photon counting (TCSPC) approaches. Reset Timing information is collected using an on-chip time-tocalb calibrated digital converter (TDC) based on a counter and a supply- interpolators regulated delay-locked loop (DLL).

Continue reading →

Piezoelectrics-on-CMOS

Traditional chemical and biological assays rely on secondary reporters for detection of binding events, as with the use of fluorescent reporters for microarrays or colorimetric enzyme labels for immunoassays. These techniques have been very effective, but they add cost and complexity to assays, provide only end-point interrogation, and often limit multiplexed detection. A move towards real-time, label free assays provides many advantages. We are working towards this goal using piezoelectric resonant sensors on CMOS.

A thin-film bulk acoustic resonator (FBAR) can be employed as the micron-scale equivalent of a quartz crystal microbalance (QCM); mass attaches to the surface of a piezoelectric crystal, causing the resonance frequency to decrease slightly. Whereas a quartz crystal sensor operates in the megahertz regime, FBAR structures resonate in the low gigahertz regime. Their small size allows array integration of sensors, similar to a microarray, and the increased frequency allows increased sensitivity. Both of these features make FBARs ideal for direct CMOS integration, where sensors can be built in dense arrays and used without bulky external measurement equipment.

In this research, we have fabricated FBAR structures monolithically on a custom CMOS substrate. The resonators are solidly mounted, and mechanical isolation is achieved with a multi-layer acoustic reflector. Monolithic fabrication enables an array of integrated resonators, and the underlying CMOS circuitry forms an independent FBAR-CMOS oscillator around each device. The CMOS substrate also contains a dedicated digital frequency counter for each oscillator, enabling parallel on-chip

frequency measurement of all sites. image 3On-chiposcillators at 850 MHz and 1.45 GHz have been demonstrated, and the integrated sensors have a mass sensitivity many times higher than that of a traditional QCM. In addition to sensing, this methodology may find significant utility in RF applications, where it enables monolithic integration of high-Q elements directly on a standard CMOS substrate.

The sensor platform has been applied to volatile organic compound (VOC) quantification, where a semi-selective polymer layer absorbs low concentrations of VOC vapors, causing a frequency shift in the underlying resonator. This interaction is reversible, allowing vapor concentration to be quantified continuously and in real time. Future work will extend this technology to broader chemical and biological sensing applications.

Related Publications:

M. L. Johnston, H. Edrees, I. Kymissis, and K. L. Shepard, “Integrated VOC Vapor Sensing on FBAR-CMOS Array,” The 25th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2012), pp. 846-849, 2012.

This paper reports first results of volatile organic compound (VOC) detection on a monolithically integrated film bulk acoustic resonator (FBAR) array on a silicon integrated circuit substrate. The combined sensor platform uses thin polymer layers as gas absorbers for individual FBAR functionalization, and frequency shifts are measured on-chip in response to changing VOC concentration. Integrating sensors, drive, and read- out functionality on a single CMOS die enables a robust, multiplex sensor platform and obviates external measurement equipment.

Continue reading →

Johnston, M. L.; Kymissis, I.; Shepard, K. L., “FBAR-CMOS Oscillator Array for Mass-Sensing Applications,” Sensors Journal, IEEE , vol.10, no.6, pp.1042-1047, June 2010.

Thin-film bulk acoustic resonators (FBAR) are an effective platform for sensitive biological and chemical detection, where their high operating frequencies make them many times more sensitive than a quartz crystal microbalance. Here, we present a monolithic, solidly mounted FBAR oscillator array on CMOS for mass-sensing applications. Through monolithic integration with CMOS drive circuitry, we aim to overcome the spatial and parasitic load limitations of externally coupled resonators to build dense sensor arrays without specialized fabrication techniques. The sensors in this work are constructed in a 6 4 array atop a 0.18μm CMOS active substrate, and mass sensitivity comparable to off-chip FBAR sensors is demonstrated.

Continue reading →

M.L. Johnston, I. Kymissis, and K.L. Shepard, “An array of monolithic FBAR-CMOS oscillators for mass-Sensing applications,” Proc. of 15th International Conference on Solid-State Sensors, Actuators & Microsystems (Transducers ’09), June 2009.

Toggle Content goes here

Continue reading →

Integrated Power Electronics

Delivering power to integrated circuits is becoming an increasingly complex challenge. On the high end, chips can demand in excess of 150 W of power at supply voltages of less than 1 V, leading to current demands approaching 200 A.