Harsh Bais, PhD

PUBLICATIONS


 

Please note that most of these articles are copyrighted and can only be downloaded for personal use.

Data downloads provide access to the raw data used in preparing the associated publication. This access is in compliance with grantee obligations under OMB Circular A-110 for Federally-funded research.

2014

  • R.M. Field, S. Realov, and K.L. Shepard A 100-fps, Time-Correlated Single-Photon-Counting-Based Fluorescence-Lifetime Imager in 130-nm CMOS, IEEE Journal of Solid-State Circuite, vol.49, no.4 (2014) advanced online version.
    Abstract

    A fully-integrated single-photon avalanche diode (SPAD) and time-to-digital converter (TDC) array for high-speed fluorescence lifetime imaging microscopy (FLIM) in standard 130-nm CMOS is presented. This imager is comprised of an array of 64-by-64 SPADs each with an independent TDC for performing time-correlated single-photon counting (TCSPC) at each pixel. The TDCs use a delay-locked-loop-based architecture and achieve a 62.5-ps resolution with up to a 64-ns range. A data-compression datapath is designed to transfer TDC data to off-chip buffers, which can support a data rate of up to 42 Gbps. These features, combined with a system implementation that leverages a x4 PCIe-cabled interface, allow for demonstrated FLIM imaging rates at up to 100 frames per second.

  • D.L. Bellin, H. Sakhtah, J.K. Rosenstein, P.M. Levine, J. Thimot, K. Emmet, L.E.P. Dietrich, and K.L. Shepard Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms, Nature Communications 5:3256 (2014) doi:10.1038/ncomms4256
    Abstract

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. ‘Images’ over a 3.250.9mm2 area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μm) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.